passion for precision

MFC – Multi-Functional Cutting Up to 96 different applications per tool

NEW

New cutting data calculator ToolExpert

Multi-functionality is the key factor for simplifying the entire manufacturing process

Interacting with state-of-the-art CAD/CAM systems, **MFC** tools offer an incomparable level of **multi-functionality**, enabling **96 applications** with only **one tool** and thus creating an **incredible cost-cutting potential**.

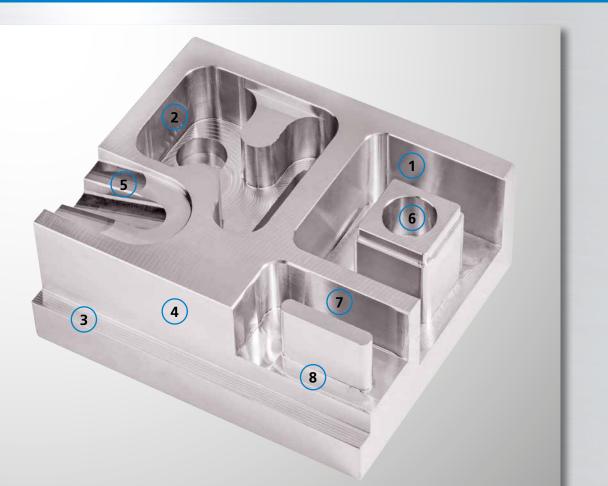
MFC – Multi-Functional-Cutting is the ideal processing solution for the **Industrial Internet.** The required knowledge of the best **tool**, **type of application and cutting data** is easily accessible via our in-house developed **ToolExpert MFC**.

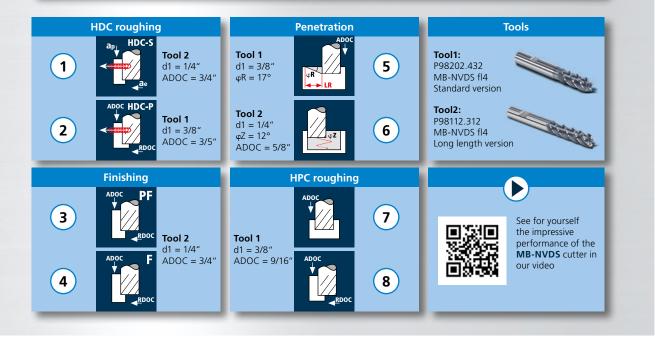
This new multi-functionality offers **great savings potential** in purchasing, in tool preparation, in setting up the machine and, not least, in terms of tool costs.

CAD/CAM systems offer a **broad range of efficient processing strategies.** The **challenge for manufacturers** is to optimally select the right milling strategy and tool for each specific application.

For that reason, the aim of **MFC** product development was to create a powerful generation of tools that are suitable for a wide range of milling strategies and materials. The **entire manufacturing process is therefore simplified without compromising on performance.**

The advantages


[2]


- **Simplified tool procurement** thanks to multi-functionality
- Reduced machine setup times thanks to a smaller range of tools
- Reduced capital commitment for tools and tool holders
- Reduced programming time thanks to the application knowledge stored in ToolExpert MFC
- More process reliability and reproducibility with chip breaker and central air and cooling channel
- Reduced costs thanks to optimal tool use and time-saving in the manufacturing process
- Outstanding productivity and competitiveness working together with CAD/CAM systems
- Optimal life cycle with ToolCare[®] tool management

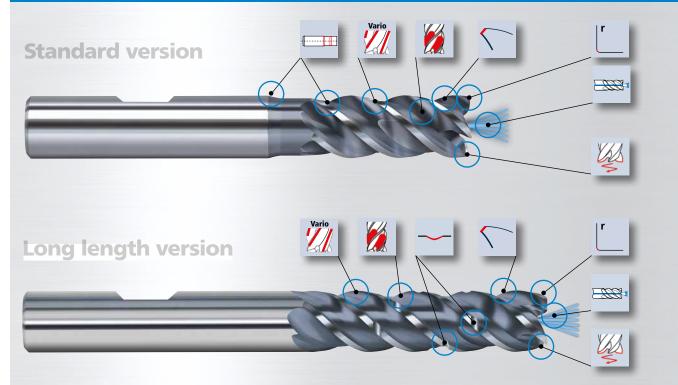
Up to 96 different applications per tool

The unique multi-functionality of the new **MFC** tools covers 12 groups of materials, each of which can be combined with eight specific applications. This range of performance is new and uniquely large!

The ranges of application of MB-NVDS tools

The technology of the multi-functional MFC tools with central air and cooling channel

The new MFC technologies: Penetration edge, central air and cooling channel and chip management



Chip management for all medium length and long length versions

- Working in combination with the central air and cooling channel, the chips are reliably flushed out of the processing area
- The design of the chip breaker and its manufacturing technology have been specially developed for multifunctional cutting
- Suitable for HPC, HDC, penetration and finishing

Combination of penetration edge and central air and cooling channel

- Provides outstanding process reliability in terms of chip removal when penetrating and processing inner contours
- Is 40% stronger and therefore more efficient than lateral channels
- Is able to process a wider range of materials due to the better cooling effect of the cutting corners
- Longer tool life with same efficiency due to improved chip removal

Tools with central air and cooling channel

- The tool is designed with a central, continuous bore that acts as an air and cooling channel
- Perfect chip removal, particularly for inner contours
- Better cooling of the cutting edge, thus allowing a higher thermal and mechanical workload as well as a broader range of materials

ľ

Small corner radius

- The cylindrical tool has a small corner radius to reinforce the cutting edge
- Greater thermal and mechanical workload and therefore increased efficiency

Milling tool with scaled slot

- Enlarges the chip space
- Optimized chip removal
- High axial and radial infeed rates possible

· [·····]··[·

Smooth transitions

- The shaft-neck-cutting edge transitions are designed with smooth gradients and radii
- Improved tool rigidity and therefore less radial deflection
- Higher mechanical workload and therefore improved performance

Tools with chip management

- The tool has a special chip breaking design
- Shorter chip lengths at high axial infeed rates, improving chip removal from both the component and the machine
- Improved automation and process reliability
- High multi-functionality of the smooth-cutting tool is retained

Milling tool with variable helix angle

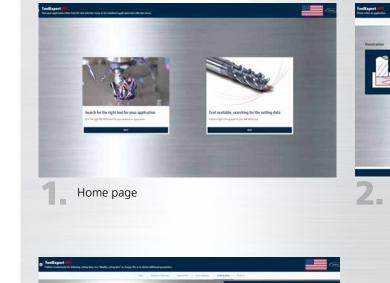
- Minimization of oscillations and vibrations
- Higher metal removal rate and longer tool life

Milling tool with special protective chamfer

- Reinforcement of the main cutting edge against chipping
- High tooth feed rates for smooth-edged tools

High-performance penetration edge

- Easy-cutting, high-performance penetration edge for high penetration angles
- Higher performance, longer tool life and improved process reliability for penetration
- High functionality with ToolExpert-HelixRamp cutting data


Quick, simple, reliable: ToolExpert MFC

Knowledge of the application technology = ToolExpert MFC

The **ToolExpert MFC** cutting data software has been developed for the new **MFC** cutters designed with a central air and cooling channel. The software is easy to launch via the FRAISA website: **www.fraisa.com/us/toolexpert-mfc.** With just a few clicks, you select the application, material, and tool and obtain the parameters that need to be programmed for your machine control system or the CAM. **ToolExpert MFC** is fast, simple, and reliable to use.

How to use ToolExpert MFC

[6]

Cutting data output

<complex-block>

The **MB-NVDS** multi-functionality with eight specific applications in 12 groups of materials provides a range of applications with over 30,000 cutting parameters. Due to this exceptional data volume, **ToolExpert MFC** replaces the previously used cutting data page. **ToolExpert MFC** is regularly updated to include the latest application knowledge.

The ranges of application and processing suitability of MFC tools

The current overview is integrated in **ToolExpert MFC**. Tool Stee Hot Work Tool Steel **Rm** 1100-1300 **Rm** 1300-1500 Rm Rm HRC HRC GG(G) Inox Inox Ti Cold Work Hot Wor high alloyed high alloy < 850 850-1100 48-52 difficult MFC P98102/P98202 PF P8102/P8202 P98112/P98212 P8112/P8212 Finishing P98102/P98202 P8102/P8202 P98112/P98212 P8112/P8212 P98102/P98202 P8102/P8202 P98112/P98212 HPC roughing P8112/P8212 P98102/P98202 P8102/P8202 P98112/P98212 P8112/P8212 P98102/P98202 P8102/P8202 P98112/P98212 HDC roughing P8112/P8212 P98102/P98202 P8102/P8202 P98112/P98212 P8112/P8212 P98102/P98202 P8102/P8202 P98112/P98212 P8112/P8212 Penetration P98102/P98202 P8102/P8202 P98112/P98212 P8112/P8212

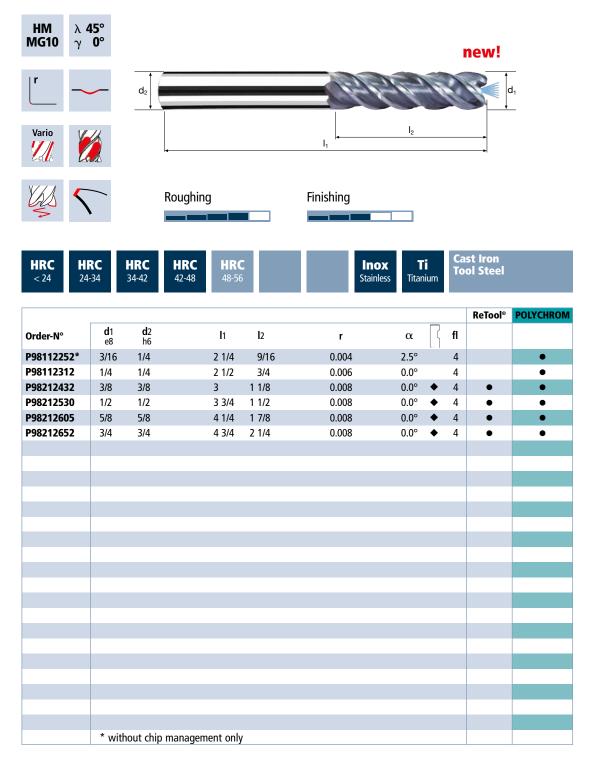
Legend:

Processing suitability = Excellent

Good

Satisfactory

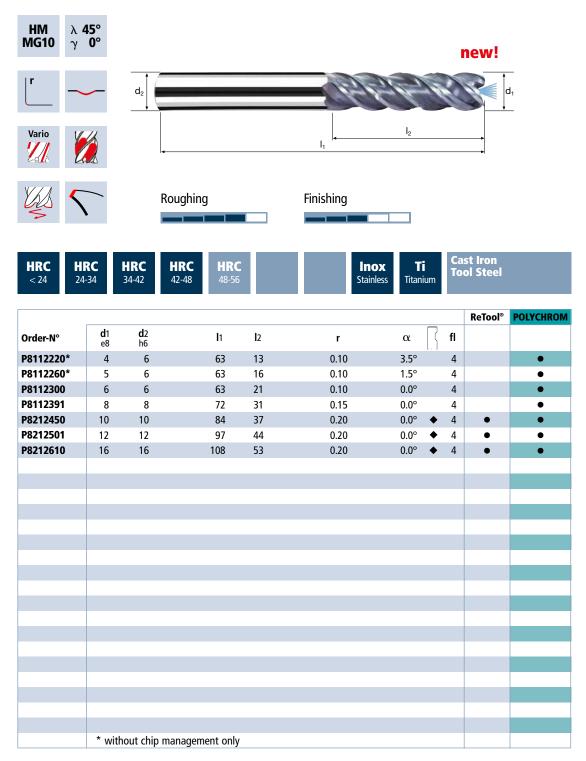
This way to the new cutting data calculator **ToolExpert MFC**


Smooth-edged, standard length with short neck High-performance penetration edge with central air/cooling channel

$\begin{array}{c} HM \\ MG10 \end{array} \begin{array}{c} \lambda \\ \gamma \end{array}$	45° 0°						I					new!	
r	•	d ₂									d ₁		
Vario						I ₁	u ₃	l ₃		→ →			
	•		Roughin	g 		Fin	ishing						
	RC -34	HRC 34-42	HRC 42-48	HRC 48-56				Inox Stainless	T Titan		Ca To	st Iron ol Steel	
												ReTool®	POLYCHROM
Order-N°	d 1	d 2 h6	d 3	I 1	I 2	I 3	r		α	R	fl		
P98102252	e8 3/16	no 1/4	0.170	2 1/4	3/8	5/8	0.004		2.5°	l. 1	4		•
P98102312	1/4	1/4	0.225	2 1/4	1/2	3/4	0.006		0.0°		4		•
P98202432	3/8	3/8	0.345	2 3/4	3/4	1 1/8	0.008		0.0°	•	4	•	•
P98202530	1/2	1/2	0.460	3 1/4	1	1 3/8	0.008		0.0°	٠	4	•	•
P98202605	5/8	5/8	0.585	3 1/2	1 1/8	1 9/16	0.008		0.0°	•	4	•	•
P98202652	3/4	3/4	0.710	4	1 3/8	1 7/8	0.008		0.0°	•	4	•	•

Smooth-edged with chip management, long length High-performance penetration edge with central air/cooling channel

FRAISA marks all exceptional innovations with the signature **KS**. This is in memory of the legendary Head of Production and Development, Mr Konrad Schmid, who defined the FRAISA brand from 1969 until 2000.


Smooth-edged, normal version with short neck High-performance penetration edge with central air/cooling channel

HM MG10	λ 45° γ 0°						I		I	new!	
r f		d ₂							d1		
Vario						I ₁	4	3			
	$\mathbf{\mathbf{n}}$		Roughing			Fir	nishing				
HRC < 24	HRC 24-34	HRC 34-42	HRC 42-48	HR 48-50				ox Ti nless Titanium	Ca To	st Iron ol Steel	
										ReTool®	POLYCHROM
Order-N°	d 1 e8	d 2 h6	d 3	I 1	12	I 3	r	α [fl		
P8102220	4	6	3.7	57	8	16	0.10	3.0°	4		•
P8102260	5	6	4.6	57	10	18	0.10	1.5°	4		•
P8102300	6	6	5.5	57	12	20	0.10	0.0°	4		•
P8102391	8	8	7.4	63	19	26	0.15	0.0°	4		•
P8202450	10	10	9.2	72	23	31	0.20	0.0° ♦	4	•	•
P8202501 P8202610	12 16	12 16	11.0 15.0	83 92	27 32	37 43	0.20 0.20	0.0° ◆ 0.0° ◆	4	•	•
P8202610 P8202612*		16	15.0	92 92	32	43 43	0.20	0.0° ◆ 0.0° ◆	4 4	•	•
F0202012	10	10	15.0	92	52	43	0.20	0.0 🗸	4	•	•
	* wi	th chip ma	anagement								

Smooth-edged with chip management, medium length version High-performance penetration edge with central air/cooling channel

FRAISA marks all exceptional innovations with the signature **KS**. This is in memory of the legendary Head of Production and Development, Mr Konrad Schmid, who defined the FRAISA brand from 1969 until 2000. [11]

Here, you will be provided with further information on the FRAISA Group.

The fastest way to our E-Shop can be found here.

FRAISA USA, Inc.

711 5th Street SW, Suite 1 | New Brighton, MN 55112 Phone: (651) 636 84 88 | Fax: (651) 636 85 88 mail: info@fraisausa.com | **fraisa.com** |

You also find us at: facebook.com/fraisagroup youtube.com/fraisagroup passion for precision

