

# Training guide

# Import of cutting conditions from the Fraisa ToolExpert





INTEGRATE DIGITAL FACTORY © 2022, TOPSOLID SAS. 7, Rue du Bois Sauvage F-91055 Évry, FRANCE Web: <u>www.topsolid.com</u> Email: <u>contact@topsolid.com</u> All rights reserved.

TopSolid<sup>®</sup> is a registered trademark of TOPSOLID SAS.

TopSolid<sup>®</sup> is a product name of TOPSOLID SAS.

The information and the software contained within this document are subject to change without prior warning and should not be construed as a commitment by TOPSOLID SAS.

The software covered by this document is supplied under license, and may only be used and duplicated in compliance with the terms of this license.

Hard copy or digital materials provided during training or accessible on-line as part of the training represent a protected original work that is the property of the training organization. They cannot be reproduced in part or in full without the express consent of the training organization.

All the texts, comments, works, illustrations and images reproduced on these materials are protected by copyright worldwide. Any use other than that designed for the purposes of training is subject to the prior authorization of the training organization, subject to prosecution. The Customer shall refrain from using, reproducing, representing, lending, exchanging, transmitting or transferring and more generally exploiting all or part of the documents without the prior written consent of TOPSOLID SAS. The Customer shall also refrain from extracting all or part of the data and/or transferring it to another material, and from modifying, adapting, arranging or transforming it without the prior written consent of the training organization. The Customer is only granted a right of use, to the exclusion of any transfer of ownership in any form whatsoever. Therefore, only the reproduction and representation of the content authorized by the French Intellectual Property code on a screen, and a single hard copy for archiving purposes, are authorized, for strictly personal purposes, and for professional use.

The Customer also undertakes to not take part in competing, directly or indirectly, with the training organization by transferring or communicating these documents to anyone.

Version 7.15 Rev.01

# Summary

| Genera  | alities                                   | 1 |
|---------|-------------------------------------------|---|
| Requ    | uirement                                  | 1 |
| Setting | 3                                         | 2 |
| 1.      | Material identification                   | 2 |
| 2.      | Tool identification                       | 3 |
| 3.      | Cutting Diameter and number of tool teeth | 4 |
| Import  | t of cutting conditions                   | 5 |

### Generalities

The Fraisa ToolExpert module allows you to import cutting conditions directly into TopSolid without having to search on internet or in the cutting tool catalogue.

This module is available from version 7.15 SP8 in TopSolid'Cam Standard Milling, Standard Turning, Pro Milling, Pro Milling-turning.

#### Requirement

In order to establish the link between TopSolid and the Fraisa ToolExpert, in the Tools/Options/Usage/Fraisa tab, check the "Show ToolExpert button" box.

Then enter the download directory in « Download file name ».

This module is available in several languages. To define the desired language, in "ToolExpert culture identifier", enter en for English.

(English : en, French : fr, German : de, Italian : it, Hungarian : hu, Chinese : cn)

Finally, the computer used must have an Internet connection.

| 🔠 Options                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | — 🗆 X                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Options         Options         Design Colors         Options         G-Code Simulation         NCSimul Machine         Display         Printing         Printing         Palysis         Rendering         Bom         CAM Options                                                                                                                                                              | <ul> <li>Show ToolExpert button         ToolExpert start address         https://www.fraisa.com/toolexpert/api/product?company=topsolid         Sending address of the Api for ToolExpert         https://www.fraisa.com/toolexpert/api/product?(%NormIdentifier%         Download file name         C:\Users\j.jamar\Downloads\Topsolid-Fraisa.xml         ToolExpert culture identifier         en         IoolExpert culture identifier         en         Download file name         C:\Users\j.jamar\Downloads\Topsolid-Fraisa.xml         ToolExpert culture identifier         en         Download file name         Distribution of the start of t</li></ul> | - C ×<br>&language=<br>}={%MaterialIdentifier%}&bestno={%T |
| Analyzes<br>Attributes<br>Cutting Conditions<br>Urillings<br>Fraisa<br>Machining Cloud<br>Fraisa<br>Comparents<br>Dialog configurations<br>Dialog configurations<br>Display Options<br>Display Options<br>Link movements<br>Machines<br>Machines<br>Method<br>Corgins<br>Part settings<br>Post-processors<br>Side Milling<br>Simulation<br>Verify External<br>Verify External<br>Verify External |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |
| Drafting                                                                                                                                                                                                                                                                                                                                                                                         | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reset                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                  | ✓ × ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |

## Setting

In order to import cutting conditions, you must first enter several pieces of information such as the material of the part to be machined, the reference of the cutting tool, its diameter and its number of teeth.

#### 1. Material identification

In order for ToolExpert to automatically select the material of the part to be machined, the part must be associated with a material. The material document in TopSolid must be identified by a "Manufacturer Part Number".



#### 2. Tool identification

In the same way as for the material, the "Manufacturer Part Number" must be entered in the tool or the tool/toolholder assembly.



#### 3. Cutting Diameter and number of tool teeth

This information is retrieved directly from the tool when it is created via the Tools/Functions/TopSolid'Cam Assistants/Machining component assistant tab.

| Radiused Mill <cutter 1=""></cutter> |    |
|--------------------------------------|----|
|                                      |    |
| Publishings                          |    |
| Cutting Diameter:                    |    |
| D1=12mm                              |    |
| Cutting Length:                      |    |
| L2=26mm                              |    |
| Corner Radius:                       |    |
| R=0,2mm                              |    |
| Cutting Tool Material Category:      |    |
| None                                 |    |
| Left-Hand:                           |    |
| M3                                   |    |
| Number Of Tool Teeth:                |    |
| Z=4                                  |    |
| Coolant Nozzle:                      |    |
| False                                | 4  |
| Maximum Ramp Angle:                  |    |
| 0.                                   |    |
| Center Cutting:                      |    |
| False                                |    |
| Cutting Edge Origin:                 |    |
| Absolute Frame (SX C D12 H8506501)   |    |
|                                      |    |
|                                      |    |
|                                      | Δ. |
|                                      |    |
|                                      |    |
|                                      |    |
|                                      |    |
|                                      |    |
|                                      |    |
|                                      |    |
|                                      |    |
|                                      |    |

# Import of cutting conditions

In the milling operations, in the "Cutting conditions" tab, the Fraisa ToolExpert button is now visible.

|                                      | \$ <b>rd</b> \$1 \$         | R\$ 4440001                        |
|--------------------------------------|-----------------------------|------------------------------------|
| Les End Milling : Cutting Conditions | >                           | Start Page 🚽 LINK FRAISA TOPSOLID* |
| END MILL SX D12 FRAISA               |                             |                                    |
| Cutting conditions                   |                             | J V A I 5. END MILL SA DIZ FRAISA  |
| a Units                              | ~                           |                                    |
| Cutting conditions                   | Ŷ.                          |                                    |
| Spindle rate tool (n)                | Cutting speed (vc)          |                                    |
| 2000tr/min                           | 75,398m/min                 |                                    |
| Feed rate (vf)                       | Tooth feed rate (fz)        | $\overline{\bigcirc}$              |
| 504mm/min                            | 0,063mm/dent                |                                    |
| Coolant mode                         | Tool feed rate (fz × Z)     |                                    |
| Jet 🗸                                | 0,252mm/tr                  |                                    |
| Coolant pressure                     | Tooth feed rate (fz) locked |                                    |
|                                      |                             |                                    |
| E Feed rate ISO output               | \$                          |                                    |
| ● Vf(mm/min)                         | ⊖ f (mm/rev)                | Ĭ                                  |
| Machine (DMG - DMU 70 evolution)     | \$                          |                                    |
| Max spindle rate                     | Max feed rate               |                                    |
| =30000tr/min                         | =10000mm/min                |                                    |
|                                      |                             |                                    |
| Cutting conditions documents:        |                             | Ă                                  |
| NO MATERIAL                          | ~                           | 1 ( 🎓 )                            |
| Choose an Abacus for Reading:        | ,                           |                                    |
| Abacus End Milling\Mills\HSS\        | *                           |                                    |
| C F                                  | oly selected Abacus         | 1                                  |
| Save Condi                           | itions For :                |                                    |
| END MILL S                           | K D12 FRAISA                |                                    |
| FRAISA ToolExpert                    | cutting Conditions          |                                    |
|                                      |                             |                                    |

Clicking on this button opens a window containing the various information automatically retrieved by TopSolid, which is required to import cutting conditions.

Click on the "Send to ToolExpert" button to be redirected to it.

| 占 End Milling                          |                                                       | $\times$ |
|----------------------------------------|-------------------------------------------------------|----------|
| <ul> <li>Request to ToolExp</li> </ul> | pert                                                  |          |
| Workpiece material                     | identifier                                            |          |
| 1.4404                                 |                                                       |          |
| Tool identifier                        |                                                       |          |
| H8606501                               |                                                       |          |
| Tool diameter                          |                                                       |          |
| 12mm                                   |                                                       |          |
| Number of tool tee                     | th                                                    |          |
| 4                                      |                                                       |          |
|                                        | Send to ToolExpert                                    |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
| <ul> <li>TopSolid'Cam cutt</li> </ul>  | ing conditions                                        |          |
| Applications                           |                                                       |          |
|                                        |                                                       | ~        |
| Parameters                             | Values                                                |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
|                                        |                                                       |          |
| https://www.fraisa                     | .com/toolexpert/api/product?company=topsolidlanguage= | :        |
|                                        | 💞 💥 👐 <b>?</b>                                        |          |

On the ToolExpert, the material is preselected if several variants exist, otherwise you will be taken directly to the page for choosing the application.



Select the application you are interested in and the ToolExpert will suggest cutting conditions that you can modify if necessary.

TopSolid/Fraisa

If you wish to import additional cutting conditions for the material penetration, which may be different, click on the "Add application case" button.

| Cutting data                                                             |                  |                        |       |                  | Actions                                                          |
|--------------------------------------------------------------------------|------------------|------------------------|-------|------------------|------------------------------------------------------------------|
| app     HDC-S       mulsion /     Excellent su       ae     Excellent su | Dil<br>itability |                        |       |                  |                                                                  |
| Select your HDC application                                              |                  |                        |       |                  | Page 1                                                           |
| Low dynamics 10%                                                         | Med              | lium dynamics 7.5      | %     | High dynamics 5% | 👲 Download PDF file                                              |
| Diameter of the cutting edge                                             | d1               | [mm]                   | 12    |                  | Add another application                                          |
| Number of cutting edges                                                  | z                | -                      | 4     |                  | Coloct another application for the tool and material you have    |
| Cutting speed                                                            | VC               | [m/min]                | 147   |                  | already selected and add it.                                     |
| Feed per tooth                                                           | fz               | [mm]                   | 0,198 |                  |                                                                  |
| Axial infeed depth                                                       | ар               | [mm]                   | 26    |                  | + Add application                                                |
| Radial infeed depth                                                      | ae               | [mm]                   | 0,9   |                  | TopSolid                                                         |
| Radial infeed depth                                                      | ae               | [%] d <sub>1</sub>     | 7,5   |                  | A small description have to explain what the user could do while |
| Tool angle of action                                                     | ew               | [°]                    | 31,8  |                  | being inside the Toolexpert interface triggered by MDM           |
| Spindle speed                                                            | n                | [min <sup>-1</sup> ]   | 3909  |                  |                                                                  |
| Feed rate                                                                | vf               | [mm/min]               | 3103  |                  | Download XML                                                     |
| Material removal rate                                                    | Q                | [cm <sup>3</sup> /min] | 72,62 |                  | Back to TopSolid                                                 |

The ToolExpert then asks you to select another application, so select the cutting conditions according to the type of material penetration.

To integrate the selected cutting conditions into TopSolid, click on "Download XML" and then on the "Back to TopSolid" button.

| Cutting data                            |     |                      |       |
|-----------------------------------------|-----|----------------------|-------|
| Emulsion / Oil<br>Excellent suitability |     |                      |       |
| Recommended cutting data                |     |                      |       |
| Diameter of the cutting edge            | d1  | [mm]                 | 12    |
| Number of cutting edges                 | z   | -                    | 4     |
| External diameter of the drilled hole   | DA  | [mm] *               | 22,8  |
| Diameter of the centering path          | DZ  | [mm] -               | 10,8  |
| Hole depth                              | TB  | [mm]                 | 26    |
| Cutting speed                           | vc  | [m/min]              | 80    |
| Feed per tooth                          | fz  | [mm]                 | 0,054 |
| Spindle speed                           | n   | [min <sup>-1</sup> ] | 2120  |
| Feed rate of the centering path         | vfZ | [mm/min]             | 458   |
| Penetration angle of the centering path | φZ  | [°]                  | 5     |

Actions



#### Add another application

Select another application for the tool and material you have already selected and add it.



TopSolid

A small description here to explain what the user could do while being inside the Toolexpert interface triggered by MDM



<u>Note</u>: Some browsers automatically block downloads. In order to be able to import the cutting conditions, the download of the XML file is mandatory, so you will have to allow/hold the download.

| Do | wnloads                                               | Ð                    | Q       |   | $\Rightarrow$ |
|----|-------------------------------------------------------|----------------------|---------|---|---------------|
| •  | Topsolid-Fraisa.xml could<br>you want to keep it anyw | harm your dev<br>ay? | ice. Do | 5 |               |
|    | Кеер                                                  | Dele                 | te      |   |               |
|    |                                                       |                      |         |   |               |

Back in TopSolid, we can see that the cutting conditions are now accessible in the "Applications" dropdown list.



Simply validate to apply the cutting conditions to the tool and the operation settings. Various parameters are imported:

- Cutting speed (Vc)
- Feed per tooth (fz)
- Spindle rate (N)
- Feed rate (Vf)

| End Milling : Cutting Conditions               | ×                              |
|------------------------------------------------|--------------------------------|
| END MILL SX D12 FRAISA                         |                                |
| Number of Teeth: 4   Material part: INOX 3 TOL |                                |
| Cutting conditions Gauges                      |                                |
| 🐔 Units                                        | *                              |
| Cutting conditions                             |                                |
| Spindle rate tool (n)                          | Cutting speed (vc)             |
| 3899tr/min                                     | 147m/min                       |
| Feed rate (vf)                                 | Tooth feed rate (fz)           |
| 3088mm/min                                     | 0,198mm/dent                   |
| Coolant mode                                   | Tool feed rate (fz $\times$ Z) |
| Jet 🗸 🗸                                        | 0,792mm/tr                     |
|                                                |                                |

- Radial infeed depth (ae)
- Axial infeed depth (ap)

| 占 End Milling : Settin                              | gs            |                         | ×                     |  |  |  |  |
|-----------------------------------------------------|---------------|-------------------------|-----------------------|--|--|--|--|
| 占 Settings i                                        | Altitudes 🗼   | Plunge 😽 🔲              | Contouring integrated |  |  |  |  |
| slands facing                                       | High Spe      | ed Machining            | Boost                 |  |  |  |  |
| Stock : 20mm Machined Stock + 0mm Stock Left = 20mm |               |                         |                       |  |  |  |  |
| Passes : 1 x 20mm = 20n                             | nm<br>        |                         |                       |  |  |  |  |
| A Machining profiles options                        |               |                         |                       |  |  |  |  |
| Iake into account the                               | e stock shape | Take into account t     | he finish shape       |  |  |  |  |
| / 🖆 Overlap                                         |               |                         | \$                    |  |  |  |  |
| Step over                                           |               | External clearance dist | ance                  |  |  |  |  |
| 0,9mm                                               | 7,76%         | 0,5mm                   |                       |  |  |  |  |
| Stocks to leave and                                 | steps         |                         | \$                    |  |  |  |  |
| Stock to leave on floor                             |               | Avial Path Method       | Maximal axial dept    |  |  |  |  |
| 0mm                                                 |               | Maximal axial denth     |                       |  |  |  |  |
| Stock to leave on wall                              |               | 26mm                    |                       |  |  |  |  |
| 0,2mm                                               |               | Final axial depth pass  |                       |  |  |  |  |
| Stock to leave on wall is                           | land          | 0mm                     |                       |  |  |  |  |
| 0,2mm                                               |               |                         | Ê Mashisina           |  |  |  |  |
| Stock to leave on wall sh                           | nift          | Final axial feed rate   |                       |  |  |  |  |
| 0mm                                                 |               |                         | = 3088mm/min          |  |  |  |  |
| Organization of stra                                | itegies       |                         | <b>A</b>              |  |  |  |  |
| Order of the neth                                   | -             | 💶 Order by packate      | ^                     |  |  |  |  |
| Order of the path                                   |               | e order by pockets      |                       |  |  |  |  |
| Strategy                                            |               | _                       | \$                    |  |  |  |  |
| Milling direction                                   |               | 🛁 Climb                 |                       |  |  |  |  |
| Z path stock fitting strat                          | egy           | None                    |                       |  |  |  |  |
| End milling strategy                                |               | Const Const             |                       |  |  |  |  |
| Clearance off stock                                 |               |                         |                       |  |  |  |  |
| Reposition clearance                                |               |                         |                       |  |  |  |  |
| 0,4mm                                               |               |                         |                       |  |  |  |  |
| <u></u>                                             |               |                         |                       |  |  |  |  |

- Penetration strategy
- Radius of helix
- Penetration angle
- Custom pentration feed rate
- Custom penetration spindle rate

| 占 End Milling : Settings            |          | _               | -          | ×                     |
|-------------------------------------|----------|-----------------|------------|-----------------------|
| <u>L</u> Settings 📩 Altitud         | les 🗼    | Plunge          | ₩□         | Contouring integrated |
| Islands facing                      | High Spe | ed Machining    |            | Boost                 |
| ✓ Start at same point               |          |                 |            |                       |
| Plunge authorized                   |          |                 |            |                       |
| Inside Material                     |          |                 |            | \$                    |
| 🗌 🚊 Use forced Z altitude plung     | e        |                 |            | *                     |
| Plunge strategy                     |          | 🗯 Helix         |            |                       |
| Helix radius                        |          | Helix minimum   | radius     |                       |
| 5,4mm                               |          | 5,4mm           |            |                       |
| Helix type                          |          | Angle           |            |                       |
| Helix angle                         |          | Helix step      |            |                       |
| 5°                                  |          | =7,8mm          |            |                       |
| Down feed rate                      |          | 📜 Custom        |            |                       |
| > 458mm/min                         |          |                 |            |                       |
| Spindle Rate                        |          | Section 2       |            |                       |
| > 2122,065908tr/min                 |          |                 |            |                       |
| Dwell after each spindle speed move | ment     |                 |            |                       |
| Os                                  |          |                 |            |                       |
| Custom coolant                      |          |                 |            | * )                   |
| 着 Outside Material                  |          |                 |            | \$                    |
| Plunge strategy                     |          | Direct          |            |                       |
| Down feed rate                      |          | F Rapid         |            |                       |
|                                     |          | = Rapid         |            |                       |
| Safety distances                    |          |                 |            | \$                    |
| Safety distance                     |          | Peripheral safe | ty distand | e                     |
| 2mm                                 |          | 2mm             |            |                       |